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1. INTRODUCTION

In this article we present a different approach in proving the results
contained in our previous paper [6]. These results were concerned with
weighted locally convex spaces of cross sections and with algebras of opera-
tors. (See Section 2 for definitions.) The viewpoint we shall adopt here
consists in firstly proving the so-called bounded case of the weighted approxi-
mation problem, and then use it to treat the general case. This approach
corresponds to the one used in [4] for the case of modules of continuous
functions, whereas the approach of [6] corresponds to the one used in [5].

The weighted spaces of cross sections contain as a particular case the
weighted spaces of vector-valued functions. For these it is possible to gener-
alize many of the results about scalar-valued functions which do not general-
ize to cross sections. For such generalizations see [8], where the weighted
Dieudonné theorem for density in tensor products is treated; [9], where the
dual of a weighted space of continuous vector-valued functions on a locally
compact space is determined; and [10], which concerns the non-self-adjoint
bounded case of the weighted approximation problem.
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2. WEIGHTED LocALLY CONVEX SPACES OF CROSS-SECTIONS

A vector fibration is a pair (E, (F,)..z) Where E is a Hausdorff space and
(F,)z< is a family of vector spaces, each vector space over the same field K of
scalars (K = R or C). By a cross section over E we mean any element of the
Cartesian product [,z F, , i.e., any function f defined on E, and such that
f(x) € F, for all x € E. The Cartesian product [ 1. F, is made a vector space
in the usual way, and a vector space of cross sections over E is, by definition,
any vector subspace of [ J,er Fiy .

A weight on E is a function v defined on E and such that v(x) is a seminorm
over F, for each x € E. A set V of weights on E is said to be directed if, for
every pair v, , v, € V, there exist v € V and ¢ > 0 such that v;(x) << to(x) for
all xeE, i =1,2. From now on we shall consider only directed sets of
weights.

If £ is a cross section over E and v is a weight on E, we will denote by o[ f]
the positive valued function defined on E by x > v(x)[ f (x)].

If X is a subset of E, then (X, [I..x F») is a vector fibration, and for any
cross section f over E, its restriction f| X is a cross section over X. Similarly,
if v is a weight on E, its restriction v | X is a weight on X, and obviously
v]| X[f1 X]1=vo[f}] X. If L is a vector space of cross sections over E, we
will denote by L | X the vector space of all f| X where f ranges over L.
Obviously L | X is a vector space of cross sections over X. Similarly, we
denote by V| X the set of all restrictions v | X where v ranges over V.

DeriniTION 1. Let L be vector space of cross sections over E. A weight v
on E is said to be

(1) L-bounded,
(2) L-upper semicontinuous,
(3) L-null at infinity,
in case the function o[ f] is, respectively,
(1) bounded on E,
(2) upper semicontinuous on E,
(3) null at infinity on E, for every cross section e L.

From this definition it follows that any weight v which is L-bounded
determines a seminorm over L, namely,

S 1SNl = sup{o(x)[ f (x)]; x € E}.

Notice also that if a weight v is L-upper semicontinuous and L-null at
infinity, then v is L-bounded.
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DerINITION 2. Let L be a vector space of cross sections over E, and let V'
be a directed set of weights which are L-bounded. We will denote by LV, the
locally convex space obtained by endowing L with the topology determined
by the family of seminorms f+> || f|l, , where v ranges over V. If the weights
v € V are L-upper semicontinuous and L-null at infinity, LV,, will denote the
locally convex space obtained as above. The spaces LV, and LV, are called
weighted locally convex spaces of cross sections.

Since we assumed ¥ to be directed, the sets of the form { fe L; || f]l, < €},
where v € V and € > 0, form a basis of neighborhoods of the origin in LV,
orLV,.

When X is a closed subset of £ and v is an L-upper semicontinuous weight
on E, then » | X is (L | X)-upper semicontinuous. Similar properties hold for
weights that are L-bounded or L-null at infinity. Hence if LV; or LV, are
defined, then (L | X)(V| X), or (L| X)(V'| X), are also defined. We will
denote such spaces simply by LV, | X and LV, | X, respectively. For more
details, see [1, 6].

3. THE WEIGHTED APPROXIMATION PROBLEM

The vector space [1..z F. of all cross sections is an A4-module, for any
subalgebra 4 C ¥(E; K), under the following multiplication operation: if
u e Aand fis a cross section, then uf is the cross section whose value at x € £
is u(x) f(x). If W is a vector space of cross sections, we say that W is an
A-module if W is an 4-submodule of [1,cp F -

Given an A-module W C LV, , the weighted approximation problem
consists, then, in asking for a description of the closure of Win LV, ; and,
in particular, in finding necessary and sufficient conditions for W to be
dense in LV, .

In the special case in which A4 consists only of constant functions, an A4-
module is, in general, only a vector subspace of LV, . In such a case, the
only thing we can do is the following: Once the dual of LV, is known, apply
the Hahn-Banach theorem.

We shall try to reduce the general case to this special one by looking at
the subsets of E on which the functions of 4 are constant, namely, the
equivalence classes X C £ modulo the equivalence relation: x; ~ x,,
whenever x, , x, € E and u(x;) = u(x,) for all ue A. We shall denote this
equivalence relation by E/A.

DErINITION 3. An A-module W C LV, is said to be localizable under 4
in LV if its closure in LV, consists of those f e L for which /| X belongs to
the closure of W X in LV, | X for each equivalence class X C £ modulo
E/A.
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The strict weighted approximation problem consists, then, in asking for
necessary and sufficient conditions in order that W be localizable under 4 in
LV,.

Suppose that 4 C €(E; K) is separating on E, thatis : if x, ye E, x # y,
there exists a€ 4 such that a(x) 5= a(y). Let WC LV, be an A-module
which is localizable under 4 in LV, . It follows from the above definitions
that in this case Wis dense in LV, if and only if, for each x € E, W(x) = {w(x);
we W}is dense in L(x) = { f(x); fe L} C F,, where F; is endowed with the
topology determined by the family of seminorms V{x) = {v(x); v € V}.

4. THE SEPARATING CASE

Let LV, be a weighted locally convex space of crosssections and W C LV,
an A-module. Let F be the quotient space of E by the equivalence relation E/A4
and let =, : €(F; K) — €¢(E; K) be the induced homomorphism defined by
m4(b) = b7 for all be %(F;K). Then B = 7;}(4) is a subalgebra of
%(F; K) which is separating on F. Hence F is a Hausforff space. For every
yeF, m7Y(y) is a closed subset of E. Let (F, (G,),r) be the vector fibration
obtained by defining G, = L | n~(y). For every weight v € ¥, we define a
a corresponding weight u on F, by setting

) uNLf 1 77H(»)] = suplv)f(X)]; x € mH(y)}-

Let M CT],.r G, be the vector subspace of cross sections over F, given by
{(f17X(»)); fe L}, and let U be the set of weights u defined by (*) where v
ranges over V. Then each weight v € U is M-upper semicontinuous and
M-null at infinity. This fact results from the following

LEmMMA (Lemma 1 [6]). Let E and F be two Hausdorff spaces andn : E— F
a continuous mapping from E onto F. For any upper semicontinuous function
g E— R, that vanishes at infinity, let h : F — R be defined by

h(y) = sup{ g(x); x e 7~ X(y)}

for all y € F. Then h is upper semicontinuous and vanishes at infinity on F.

Hence we may consider the weighted space MU, . If we define
X = {(w |7 (p)); we W}, then X C MU, and is a B-module.

THEOREM 1. W is localizable under A in LV, if and only if, X is localizable
under B in MU, .

Remark 1. Theorem 1 confirms the conjecture stated in [3], namely, that
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the separating and the general cases of the strict weighted approximation
problem are equivalent. This together with the final comments in Section 3
establish that corresponding to every sufficient condition for localizability
there is a corollary on density in the separating case.

The argument used to prove Theorem 1 of [6] applies here, too, with only
a slight modification.

5. THE BOUNDED CASE

From now on, E denotes a completely regular Hausdorff space.

DEerINITION 4. In the notation of Definition 3, the bounded case of the
weighted approximation problem occurs when every a € 4 is bounded on
the support of every v e V. Each of the following hypotheses leads to an
instance of the bounded case:

A CE(E; K); M
each v € V has a compact support. (2)

THEOREM 2. Assume that A is self-adjoint, in the complex case, and that
we are in the bounded case. Then W is localizable under A in LV, .

Proof. Let fe LV, be such that /| X belongs to the closure of W | X in
LV, | X, for each equivalence class X C E modulo E/4. Letve Vand e >0
be given. We may assume 4 C %,(E; K) by replacing E by the support of v,
if necessary. Given any equivalence class X C E modulo E/A, there exists
some wy € W such that

o) f(x) — wr(x)] <e

for any xe X. The closed set Ky = {x € E; v(x)[f(x) — wx(x)] = €} is
compact, since v f — wy] vanishes at infinity. Moreover, X and K, are
disjoint. By Lemma 1 [4], there is a finite set £ of equivalence classes in E
modulo E/A, and functions ¢y belonging to the closure of 4 in %,(E; K)
such that ¢y > 0 and @y | Ky = Ofor all X e &£ and X y.» ¢y = 1. Notice
that

Px(x) v(X)[ f(x) — wx(x)] < epy(x) 3
for any x € E and X € .Z. In fact, either x € Ky and then gy(x) = 0; or else

x ¢ Ky, in which case v(x)[ f(x) — wx(x)] < e. In both cases, (3) holds true.
Hence

09 [T ox( wx® — 9] <<, “@

Xe¥
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for any x € E. If % has k elements, let > 0 be such that kM <C ¢, where M
is the maximum of || wy ||, for X ranging over £. For each X € & there exists
some gy € A such that | ay(x) — px(x)] < 8 for all x € E. Hence

o) [ 3 ax) wxlx) — )] < 2
Xe¥
forall x € E. Since AW C W, w = 3y aywy belongs to W, and therefore f
belongs to the closure of Win LV, . Q.E.D.

6. SUFFICIENT CONDITIONS FOR LOCALIZABILITY

We will denote by #(R") the algebra of all R-valued polynomials on R™. A
weight on R™ is an upper semicontinuous positive real-valued function on R,
A weight w on R" is said to be rapidly decreasing at infinity when
PR C Fwy(RM), or equivalently #(R*) C Fw,(R"). If, in addition to this,
Z(R") is dense in Fw(R™), then w is said to be a fundamental weight. We
shall denote by £, the set of all fundamental weights on R, and by I, the
subset of £2,, consisting of all y € 2, such that y* € 2, , for all k > 0.

We shall consider R” as a vector lattice in the usual way: if u = (uy ,..., u,,)
and t = (t, ,..., t,) belong to R", we write u < ¢ provided u,; < ¢, for all
i=1,2,..,n; and define | u| = ({4 | ,..., | 4, |)- A real-valued function @
defined on R” is then said to be modulus-decreasing if u, t e R and | u | < | ¢|
imply (1) > ¢(¢). Denote by £2,2 the subset of £2, consisting of those
fundamental weights which are decreasing, and by I',% the intersection
r,n Q4

If 4 is a subalgebra of ¥(E; K) containing the constants, G(4) will denote
a subset of 4 which topologically generates 4 as an algebra over K with
unity, i.e., the subalgebra over K of 4, generated by G(4) and 1, is dense in 4
for the compact-open topology of #(E; K). Similarly, if WC LV, is an
A-module, G(W) will denote a subset of W which topologically generates W
as a module over 4, i.e., the submodule over 4 of W, generated by G(W), is
dense in W for the topology of LV, .

THEOREM 3. Suppose that there exist G(A) and G(W) such that

(1) G(A) consists of real-valued functions;
(2) given any v € V; a,,..., a, € G(A) and w e G(W), there exist
Qi 5o Ay € G(A), where N = n, and w € Qy; , such that
BAWEA] < @y (®)rrr BulD)orr (X))

forallxeE.
Then W is localizable under A in LV, .
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Remark 2. The above theorem reduces the search for sufficient conditions
for localizability on a completely regular space to the search of sufficient
conditions for a weight on R” to be fundamental. Theorem 3 follows from
Theorem 2 in the same manner as Theorem 2 follows from Theorem 1 [4]. An
independent proof of Theorem 3 can be modeled on the proof of Theorem 1
[5, § 26], an approach that was indicated in [6]. Our next theorem is a
slight variation of Theorem 3, dropping the hypothesis (1) in the complex
case.

THEOREM 4. Suppose that A is self-adjoint in the complex case, and that
there exist G(A) and G(W) such that, given any ve 'V, ay ,..., a, € G(4) and
w e G(W), there exist a,.; ..., ay € G(A), where N = n and w € 2,2, such that

U(X)[W(x)] < w(l al(x)l ERRES ] I an(x)l ERREZ] l aN(x)l)
Jor all x € E. Then W is localizable under A in LV, .

Our next two theorems reduce the search for sufficient conditions for
localizability of modules to the search for fundamental weights on R, i.e., to
the one-dimensional Bernstein approximation problem.

THEOREM 5. Suppose that there exist G(A) and G(W) such that

(1) G(A) consists of real-valued functions;
2) given any veV, ac G(A) and we G(W), there exists y € I'y such
that, for all xe E :

v(x)[w(x)] < y(a(x)).
Then W is localizable under A in LV ., .
THEOREM 6. Assume that A is self-adjoint in the complex case, and that

there exist G(A) and G(W) such that, given any v € V, a € G(A) and w € G(W),
there exists y € I'y% such that

v(x)wx)] < y( a(x))

Jor all x € E. Then W is localizable under A in LV, .

Remark 3. The above theorem combined with classical results concerning
the Bernstein problem allows one to find practical sufficient conditions for
localizability.

THEOREM 7 (analytic criterion for localizability). Assume that A is self-
adjoint in the complex case, and that there exist G(A) and G(W) such that, given
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any veV, ac G(A) and we G(W), there exist constants C >0 and ¢ >0
such that, for all x€ E .

v(x)[w(x)] < Ce~ele@1,

Then W is localizable under A in LV, .

THEOREM 8 (quasi-analytic criterion for localizability). Assume that A
is self-adjoint in the complex case, and that there exist G(4) and G(W) such
that, given any v € V, a € G(A) and w € G(W), we have

Y (M) Mm = +o0
m=1

where M, = sup{v(x)[a™(x) w(x)]; xc E} for m = 0,1,2,.... Then W is
localizable under A in LV, .

Remark 4. Theorem 7 is based on the uniqueness of analytic continuation,
whereas Theorem 8 rests on the Denjoy—Carleman theorem.

If there exist G(A) and G(W) such that every a € G(A4) is bounded on the
support of the function v[w], for any v € ¥V and w € G(W), it follows from
Theorem 7 that W is localizable under 4 in LV, . This result extends
Theorem 2.

7. ALGEBRAS OF OPERATORS

In what follows, % denotes a locally convex Hausdorff space over K, and
(% denotes a commutative algebra of linear operators over %, not necessarily
continuous. We further assume that (7 contains the identity operator.

DeriniTION 5. The point co-spectrum of (7 is the set of all homo-
morphisms # of (¥ onto K for which there exists ¢ € &', ¢ 5= 0, such that
p(u(x)) = h(u) p(x) forallu e ¢, and x € Z.

The point cospectrum of (% is also the set of all homomorphisms 4 of (¥
onto K for which there exists ¢ € #’, @ # 0, such that ¢(u(x)) = 0 for all u
in the kernel of 4, and x in #. Or, equivalently, the set of all homomorphisms
h of O onto K such that the closed vector subspace S, of £ spanned by
{u(x); u € A1(0), x € £} is a proper vector subspace of .Z.

We shall endow the point cospectrum of (7 with the weakest topology
under which all the functions # defined on it by #(h) = h(u) are continuous,
where u ranges over ¢Z. This topology is a Hausdorff one, and we shall denote
by E the point cospectrum of (¥ endowed with this topology. For each 2 ¢ E,
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consider the quotient vector space Fj, = Z/S,, and let x+> x, be the
associated quotient map. Then, for each x € Z, the family (x,)scx iS a cross-
section over E, which we shall denote by @(x). The mapping @ from & into
I 1ice F is obviously linear. Let L = @(%). For each continuous seminorm
p over Z, let p, denote the quotient seminorm defined by

pu(xy) = inf{ p(y); y € x3}

for all x, € F;, . The mapping & +> p; is then a weight over FE, and we will
denote by ¥(I") the set of all such weights, where p ranges over a set I" of
continuous seminorms of .# which determine the topology of #. Notice
that every weight in V(I") is L-bounded, for p,(x,) < p(x) for all he E.
Hence we may consider the weighted space LV(I"), .

The above inequality also shows that @ is a continuous map from & onto
LV(I"), . On the other hand, the mapping u — 4 is a homomorphism of ¥
into €(E; K). Let A denote the image of ¢ under this homomorphism.
Notice that A4 is separating over E, and that ®(u(x)) = i - D(x) for all
ue  and x € Z. Hence L is an A-module, and u +— @ is an isomorphism
whenever @ is an isomorphism. The following representation theorem
establishes a condition under which @ is a topological vector isomorphism.

THEOREM 9. A necessary and sufficient condition for the existence of a set
I of seminorms over ¥, which determines the topology of &, such that D is a
topological vector isomorphism between £ and LV (D), is that £ be locally
convex under O/ with respect to the category of all algebras isomorphic to K.

Remark 5. The above notion of local convexity was introduced in [2].
In order to be able to represent £ as an LV(I"),, space, additional hypotheses
on the seminorms of I" must be satisfied namely, for each p € I" the function
h — py(x;) must be upper semicontinuous and null at infinity, for every
x €. Once L has been represented as an LV(I'),, , we may define localiza-
bility under ¢ for (l-invariant subspaces, and consider the problem of
finding necessary and sufficient conditions for a given (Z-invariant subspace
to be dense in .#. Furthermore, we may ask when spectral synthesis holds,
i.e., when a proper closed (7-invariant subspace is the intersection of all the
proper closed (Z-invariant subspaces of codimension one containing it. The
following theorem answers this question (see [6], [7].)

THEOREM 10. Let ¥ be a space which can be represented as an LV(I'),, ,
and let W be a proper closed Ol-invariant subspace which is localizable under
X in &. Then # is contained in some proper closed (l-invariant subspace of
codimension one and is the intersection of all proper closed Cl-invariant sub-
spaces of codimension one which contain it.
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