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1. INTRODUCTION

In this article we present a different approach in proving the results
contained in our previous paper [6]. These results were concerned with
weighted locally convex spaces of cross sections and with algebras of opera
tors. (See Section 2 for definitions.) The viewpoint we shall adopt here
consists in firstly proving the so-called bounded case of the weighted approxi
mation problem, and then use it to treat the general case. This approach
corresponds to the one used in [4] for the case of modules of continuous
functions, whereas the approach of [6] corresponds to the one used in [5].

The weighted spaces of cross sections contain as a particular case the
weighted spaces of vector-valued functions. For these it is possible to gener
alize many of the results about scalar-valued functions which do not general
ize to cross sections. For such generalizations see [8], where the weighted
Dieudonne theorem for density in tensor products is treated; [9], where the
dual of a weighted space of continuous vector-valued functions on a locally
compact space is determined; and [10], which concerns the non-self-adjoint
bounded case of the weighted approximation problem.
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2. WEIGHTED LOCALLY CONVEX SPACES OF CROSS-SECTIONS
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A vector fibration is a pair (E, (FX)XEE) where E is a Hausdorff space and
(FX)XEE is a family of vector spaces, each vector space over the same field K of
scalars (K = R or C). By a cross section over E we mean any element of the
Cartesian product DXEEFx , i.e., any functionf defined on E, and such that
f (x) EF", for all x E E. The Cartesian product D",eE Fx is made a vector space
in the usual way, and a vector space of cross sections over E is, by definition,
any vector subspace of D",eE Fx •

A weight on E is a function v defined on E and such that vex) is a seminorm
over F", for each x E E. A set V of weights on E is said to be directed if, for
every pair VI , V2 E V, there exist v E V and t > 0 such that Vi(X) ~ tv(x) for
all x E E, i = 1, 2. From now on we shall consider only directed sets of
weights.

Iff is a cross section over E and v is a weight on E, we will denote by v[il
the positive valued function defined on E by x f--+ v(x)[f(x)].

If X is a subset of E, then (X, DXEX Fx) is a vector fibration, and for any
cross sectionf over E, its restrictionf I X is a cross section over X. Similarly,
if v is a weight on E, its restriction v I X is a weight on X, and obviously
v I X[fl X] = v[ill X. If L is a vector space of cross sections over E, we
will denote by L I X the vector space of all f I X where f ranges over L.
Obviously L I X is a vector space of cross sections over X. Similarly, we
denote by V IX the set of all restrictions v I X where v ranges over V.

DEFINITION 1. Let L be vector space of cross sections over E. A weight v
on E is said to be

(1) L-bounded,

(2) L-upper semicontinuous,

(3) L-null at infinity,

in case the function v[f] is, respectively,

(1) bounded on E,

(2) upper semicontinuous on E,

(3) null at infinity on E, for every cross sectionfE L.

From this definition it follows that any weight v which is L-bounded
determines a seminorm over L, namely,

ff--+ Ilfll" = sup{v(x)[f(x)]; x E E}.

Notice also that if a weight v is L-upper semicontinuous and L-null at
infinity, then v is L-bounded.
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DEFINITION 2. Let L be a vector space of cross sections over E, and let V
be a directed set of weights which are L-bounded. We will denote by LVb the
locally convex space obtained by endowing L with the topology determined
by the family of seminorms/I-+ II/I!v , where v ranges over V. If the weights
v E V are L-upper semicontinuous and L-null at infinity, LV", will denote the
locally convex space obtained as above. The spaces LVb and LV00 are called
weighted locally convex spaces of cross sections.

Since we assumed Vto be directed, the sets of the form {/E L; 11/llv ,s:; e},
where v E V and e > 0, form a basis of neighborhoods of the origin in L Vb
or LV", .

When X is a closed subset of E and v is an L-upper semicontinuous weight
on E, then v I X is (L I X)-upper semicontinuous. Similar properties hold for
weights that are L-bounded or L-null at infinity. Hence if LVb or LV", are
defined, then (L I X)(V I X)b or (L I X)(V I X)", are also defined. We will
denote such spaces simply by LVb I X and LV00 I X, respectively. For more
details, see [1, 6].

3. THE WEIGHTED ApPROXIMATION PROBLEM

The vector space I1"'EE F", of all cross sections is an A-module, for any
subalgebra A C C(j'(E; K), under the following multiplication operation: if
u E A and/ is a cross section, then uf is the cross section whose value at x E E
is u(x) j(x). If W is a vector space of cross sections, we say that W is an
A-module if W is an A-submodule of I1"'EE F", .

Given an A-module we LV"" the weighted approximation problem
consists, then, in asking for a description of the closure of W in LV", ; and,
in particular, in finding necessary and sufficient conditions for W to be
dense in LV",.

In the special case in which A consists only of constant functions, an A
module is, in general, only a vector subspace of LV", . In such a case, the
only thing we can do is the following: Once the dual of LV", is known, apply
the Hahn-Banach theorem.

We shall try to reduce the general case to this special one by looking at
the subsets of E on which the functions of A are constant, namely, the
equivalence classes X C E modulo the equivalence relation: Xl ~ X2 ,

whenever Xl' x 2 E E and u(xI ) = u(x2) for all U E A. We shall denote this
equivalence relation by EfA.

DEFINITION 3. An A-module we LV", is said to be localizable under A
in LV", if its closure in LV", consists ofthose/E L for which/I X belongs to
the closure of W I X in LV", I X for each equivalence class X C E modulo
EfA.
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The strict weighted approximation problem consists, then, in asking for
necessary and sufficient conditions in order that W be localizable under A in
LVoo •

Suppose that A C rt'(E; K) is separating on E, that is : if x, y E E, x =1= y,
there exists a E A such that a(x) =1= a(y). Let we LVoo be an A-module
which is localizable under A in LV00 • It follows from the above definitions
that in this case W is dense in LV00 if and only if, for each x E E, W(x) = {w(x);
WE W} is dense in L(x) = {f(X);jE L} C Fx , where Fx is endowed with the
topology determined by the family of seminorms Vex) = {vex); V E V}.

4. THE SEPARATING CASE

Let LV00 be a weighted locally convex space of crosssections and W C LV00

an A-module. Let Fbe the quotient space of E by the equivalence relation EjA
and let 7T* : rt'(F; K) -+ rt'(E; K) be the induced homomorphism defined by
7T*(b) = b .7T for all bE rt'(F; K). Then B = 7T;;l(A) is a subalgebra of
rt'(F; K) which is separating on F. Hence F is a Hausforff space. For every
y E F, 7T-I (y) is a closed subset of E. Let (F, (G1JlIEF) be the vector fibration
obtained by defining GlI = L 17T-I (y). For every weight v E V, we define a
a corresponding weight u on F, by setting

(*) u(y)[fl7T-I(y)] = sup{v(x)[f(x)]; X E7T- I (y)}.

Let Me TIlIEF GlI be the vector subspace of cross sections over F,given by
{(f I7T-I (y));f E L}, and let U be the set of weights u defined by (*) where v
ranges over V. Then each weight u E U is M-upper semicontinuous and
M-null at infinity. This fact results from the following

LEMMA (Lemma 1 [6]). Let E and F be two Hausdorffspaces and7T : E ~ F
a continuous mapping from E onto F. For any upper semicontinuous function
g : E -+ R+ that vanishes at infinity, let h : F -+ R+ be defined by

hey) = sup{ g(x); X E 7T-I(y)}

for all y E F. Then h is upper semicontinuous and vanishes at infinity on F.

Hence we may consider the weighted space MU00' If we define
X = {(w 17T-I(y)); WE W}, then X C MUoo and is a B-module.

THEOREM 1. W is localizable under A in LV00 if and only if, X is localizable
under B in MUoo •

Remark 1. Theorem 1 confirms the conjecture stated in [3], namely, that
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the separating and the general cases of the strict weighted approximation
problem are equivalent. This together with the final comments in Section 3
establish that corresponding to every sufficient condition for localizability
there is a corollary on density in the separating case.

The argument used to prove Theorem I of [6] applies here, too, with only
a slight modification.

5. THE BOUNDED CASE

From now on, E denotes a completely regular Hausdorff space.

DEFINITION 4. In the notation of Definition 3, the bounded case of the
weighted approximation problem occurs when every a E A is bounded on
the support of every v E V. Each of the following hypotheses leads to an
instance of the bounded case:

A C rt'b(E; K);

each v E V has a compact support.

(I)

(2)

THEOREM 2. Assume that A is self-adjoint, in the complex case, and that
we are in the bounded case. Then W is localizable under A in LV,:o .

Proof Let I E LV", be such that I I X belongs to the closure of W IX in
LV", I X, for each equivalence class XC E modulo EjA. Let v E V and E > 0
be given. We may assume A C rt'b(E; K) by replacing E by the support of v,
if necessary. Given any equivalence class XC E modulo EjA, there exists
some Wx E W such that

v(x)[f(x) - wx(x)] < E

for any x E X. The closed set Kx = {x E E; v(x)[f(x) - wx(x)] ~ E} is
compact, since v[f - wx] vanishes at infinity. Moreover, X and Kx are
disjoint. By Lemma I [4], there is a finite set 2 of equivalence classes in E
modulo EjA, and functions f(!x belonging to the closure of A in rt'b(E; K)
such that f(!x ~ 0 and f(!x I Kx = 0 for all X E 2 and Lxe..2' f(!x = 1. Notice
that

f(!x(x) v(x)[f(x) - wx(x)] < Ef(!X(X) (3)

for any x E E and X E 2. In fact, either x E Kx and then f(!x(x) = 0; or else
x¢: Kx , in which case v(x)[f(x) - wx(x)] < E. In both cases, (3) holds true.
Hence

vex) [L f(!x(x) wx(x) - I(x)] < E,
xe..2'

(4)



WEIGHTED APPROXIMATION 85

for any x E E. If 2 has k elements, let D> 0 be such that DkM :s; e, where M
is the maximum of II Wx Ilv for X ranging over 2. For each X E 2 there exists
some ax E A such that Iax(x) - epx(x)I :s; Dfor all x E E. Hence

vex) [L ax(x) wx(x) - f(x)] ~ 2e
XEZ

for all x E E. Since Awe W, w = LXEZ axwx belongs to W, and thereforef
belongs to the closure of Win LVoo • Q.E.D.

6. SUFFICIENT CONDITIONS FOR LOCALIZABILITY

We will denote by &(Rn) the algebra of all R-valued polynomials on Rn. A
weight on Rn is an upper semicontinuous positive real-valued function on Rn.
A weight w on Rn is said to be rapidly decreasing at infinity when
&(Rn) e 'Cwb(Rn), or equivalently &(Rn) e 'Cwoo(Rn). If, in addition to this,
&(Rn) is dense in 'Cwoo(Rn), then w is said to be a fundamental weight. We
shall denote by Qn the set of all fundamental weights on Rn, and by Tn the
subset ofQn consisting of all y E Qn such that yk E Qn , for all k > O.

We shall consider Rn as a vector lattice in the usual way: if u = (U1 ,... , un)
and t = (t1 , ... , tn) belong to Rn, we write u ~ t provided Ui ~ t i for all
i = 1,2'00" n; and define I u I = (\ U1 I '00" I Un I). A real-valued function ep
defined on Rn is then said to be modulus-decreasing if u, tERn and I u I ~ I t I
imply ep(u) ;;:, ep(t). Denote by Qnd the subset of Qn consisting of those
fundamental weights which are decreasing, and by Tnd the intersection
Tn n Qnd.

If A is a subalgebra of 'C(E; K) containing the constants, G(A) will denote
a subset of A which topologically generates A as an algebra over K with
unity, Le., the subalgebra over K of A, generated by G(A) and 1, is dense in A
for the compact-open topology of 'C(E; K). Similarly, if we LV00 is an
A-module, G(W) will denote a subset of W which topologically generates W
as a module over A, i.e., the submodule over A of W, generated by G(W), is
dense in W for the topology of LV00 •

THEOREM 3. Suppose that there exist G(A) and G(W) such that

(1) G(A) consists of real-valued functions;

(2) given any v E V; a1 , ... , an E G(A) and w E G(W), there exist
an+! ,..., aN E G(A), where N ;;:, n, and w E QN , such that

v(x)[w(x)] ~ w(a1(x), ... , an(x),oo., aN(x))

for all x EE.
Then W is localizable under A in LV00 •
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Remark 2. The above theorem reduces the search for sufficient conditions
for localizability on a completely regular space to the search of sufficient
conditions for a weight on Rn to be fundamental. Theorem 3 follows from
Theorem 2 in the same manner as Theorem 2 follows from Theorem I [4]. An
independent proof of Theorem 3 can be modeled on the proof of Theorem 1
[5, § 26], an approach that was indicated in [6]. Our next theorem is a
slight variation of Theorem 3, dropping the hypothesis (1) in the complex
case.

THEOREM 4. Suppose that A is self-adjoint in the complex case, and that
there exist G(A) and G(W) such that, given any v E V, al ,... , an E G(A) and
WE G(W), there exist an+! ,... , aN E G(A), where N ? nand wE DNd, such that

for all x E E. Then W is localizable under A in LV00 •

Our next two theorems reduce the search for sufficient conditions for
localizability of modules to the search for fundamental weights on R, i.e., to
the one-dimensional Bernstein approximation problem.

THEOREM 5. Suppose that there exist G(A) and G(W) such that

(1) G(A) consists of real-valued functions;

(2) given any v E V, a E G(A) and WE G(W), there exists y E r l such
that, for all x E E :

v(x)[W(x)] ~ y(a(x».

Then W is localizable under A in LV00 •

THEOREM 6. Assume that A is self-adjoint in the complex case, and that
there exist G(A) and G(W) such that, given any v E V, a E G(A) and W E G(W),
there exists y E rld such that

v(x)[W(x)] ~ y(1 a(x)1)

for all x E E. Then W is localizable under A in LVoo •

Remark 3. The above theorem combined with classical results concerning
the Bernstein problem allows one to find practical sufficient conditions for
localizability.

THEOREM 7 (analytic criterion for localizability). Assume that A is self
adjoint in the complex case, and that there exist G(A) and G(W) such that, given
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any v E V, a E G(A) and WE G(W), there exist constants C > 0 and c > 0
such that, for all x E E :

v(x)[W(x)] ::::;: Ce-c1a(x)l.

Then W is localizable under A in L Yo", •

THEOREM 8 (quasi-analytic criterion for localizability). Assume that A
is self-adjoint in the complex case, and that there exist G(A) and G( W) such
that, given any v E V, a E G(A) and WE G(W), we have

00

L (Mm)-l/m = +00

m=l

where M m = sup{v(x)[am(x) w(x)]; x E E} for m = 0, 1,2,.... Then W is
localizable under A in LV00 •

Remark 4. Theorem 7 is based on the uniqueness ofanalytic continuation,
whereas Theorem 8 rests on the Denjoy-Carleman theorem.

If there exist G(A) and G(W) such that every a E G(A) is bounded on the
support of the function v[w], for any v E V and WE G(W), it follows from
Theorem 7 that W is localizable under A in LVoo • This result extends
Theorem 2.

7. ALGEBRAS OF OPERATORS

In what follows, 2 denotes a locally convex Hausdorff space over K, and
01 denotes a commutative algebra of linear operators over 2, not necessarily
continuous. We further assume that 01 contains the identity operator.

DEFINmON 5. The point co-spectrum of 01 is the set of all homo
morphisms h of 01 onto K for which there exists g; E 2', g; ¥= 0, such that
g;(u(x» = h(u) g;(x) for all U E 01, and x E 2.

The point cospectrum of 01 is also the set of all homomorphisms h of 01
onto K for which there exists g; E 2', g; =1= 0, such that g;(u(x» = 0 for all u
in the kernel ofh, and x in 2. Or, equivalently, the set of all homomorphisms
h of 01 onto K such that the closed vector subspace Sh of 2 spanned by
{u(x); u E h-1(0), X E 2} is a proper vector subspace of 2.

We shall endow the point cospectrum of 01 with the weakest topology
under which all the functions u defined on it by u(h) = h(u) are continuous,
where u ranges over 01. This topology is a Hausdorff one, and we shall denote
by E the point cospectrum of 01 endowed with this topology. For each h E E,
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consider the quotient vector space Fh = 2/Sh , and let x ~ Xh be the
associated quotient map. Then, for each x E 2, the family (xhheE is a cross
section over E, which we shall denote by <P(x). The mapping <P from 2 into
TIheE Fh is obviously linear. Let L = <P(2). For each continuous seminorm
p over 2, let Ph denote the quotient seminorm defined by

for all Xh E Fh . The mapping h ~ Ph is then a weight over E, and we will
denote by VCr) the set of all such weights, where p ranges over a set r of
continuous seminorms of 2 which determine the topology of 2. Notice
that every weight in veT) is L-bounded, for Ph(Xh) :::;; p(x) for all hE E.
Hence we may consider the weighted space LV(r)b'

The above inequality also shows that <P is a continuous map from 2 onto
LV(T)b' On the other hand, the mapping u ~ ii is a homomorphism of ot
into '(feE; K). Let A denote the image of ot under this homomorphism.
Notice that A is separating over E, and that <P(u(x)) = ii . <P(x) for all
u E ot and x E 2. Hence L is an A-module, and u ~ ii is an isomorphism
whenever <P is an isomorphism. The following representation theorem
establishes a condition under which <P is a topological vector isomorphism.

THEOREM 9. A necessary and sufficient condition for the existence of a set
r of seminorms over 2, which determines the topology of 2, such that <P is a
topological vector isomorphism between 2 and LV(r)b is that 2 be locally
convex under ot with respect to the category of all algebras isomorphic to K.

Remark 5. The above notion of local convexity was introduced in [2].
In order to be able to represent 2 as an L V(r)oo space, additional hypotheses
on the seminorms of r must be satisfied namely, for each pEr the function
h -+ piXh) must be upper semicontinuous and null at infinity, for every
x E 2. Once L has been represented as an LV(r)oo , we may define localiza
bility under ot for ot-invariant subspaces, and consider the problem of
finding necessary and sufficient conditions for a given ot-invariant subspace
to be dense in 2. Furthermore, we may ask when spectral synthesis holds,
i.e., when a proper closed ot-invariant subspace is the intersection of all the
proper closed ot-invariant subspaces of codimension one containing it. The
following theorem answers this question (see [6], [7].)

THEOREM 10. Let 2 be a space which can be represented as an LV(r)oo,
and let iF be a proper closed ot-invariant subspace which is localizable under
ot in 2. Then iF is contained in some proper closed ot-invariant subspace of
codimension one and is the intersection of all proper closed ot-invariant sub
spaces of codimension one which contain it.
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